The Amoeba Distributed Operating System
(Part 2)

Sape J. Mullender
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The Amoeba Project is a distributed project on distributed operating systems.
The project, which started as the author’'s PhD research project in 1978 [5], is
now a joint project of CWI and Vrije Universiteit in Amsterdam. About a dozen
people are working on the project, led by prof.dr. A.S. Tanenbaum (VU) and
the author (CWI). Part 1 of this paper appeared in the previous Newsletter and
discussed the interprocess communication facilities and the capability-based
protection mechanisms of the Amoeba system. Here, in Part 2, some of the
Amoeba services will be discussed.

1. INTRODUCTION

The basic entities of the Amoeba Distributed Operating System are clients, ser-
vices and objects. A client process can request the service that manages an
object to carry out an operation on it by sending a request to one of the
service’s server processes. For identification and protection, each object has a
capability, a 128-bit string that contains enough sparseness that it cannot be
forged. Inside the capability is a port, a 48-bit string that identifies the service
managing the object. When a client makes a request, the system uses this port
to find a server process to carry it out.

Traditional operating systems usually provide hundreds of system calls.
These are ‘procedure calls’ into the operating system kernel. There are calls to
open, read, write and close files, calls to create and destroy processes, to mani-
pulate tape drives and terminals, and so forth. In Amoeba, there are only
three* system calls, one for clients and two for servers: A client process makes
a server request by calling trans; this sends a request to a service and waits for
a reply. A server process receives a request by calling getreg, and sends a
reply by a call to putrep. (See Part 1 for more details.)

* Actually, there are a few more for interrupting transactions and dealing with Gateways to other
networks. Going into these would make this paper too technical, however.

15



There are no system calls for creating processes or reading files in Amoeba.
When a new process has to be created, a request is sent to the process server,
and when a file must be read, a request goes to the file server. Some of these
services are kernel services, that is, they form part of the operating system ker-
nel, others are implemented as user services, that is, the server runs as an ordi-
nary user process. Amoeba makes no distinction, and clients perceive no
difference.

The advantages of this method are obvious: Programmers have to deal with
only one way of addressing services, and it allows the system designers to
implement services outside the kernel for maintainability or inside it for speed.
New versions of a service can always be tested outside the kernel, to be
installed inside it only after thorough testing.

The next sections describe a few of the important services provided by the
Amoeba system: Process Service, File Service, Directory Service, and Bank
Service.

2. PROCESS SERVICE

Managing processes on Amoeba is a task that is carried out by a number of
co-operating services. The central one is the service provided by the Amoeba
operating system kernel. The kernel assigns processes to the processor so they
can do their work. But there’s more to process management: processes have
to be assigned to the right processor; when a process crashes, or does some-
thing irregular, such as attempting to make a Unix system call on an Amoeba
kernel, something has to be done about it; programs have to be fetched from a
file before they can be run.

The design of the system is such that the Amoeba kernel implements a
minimum of basic process management mechanisms, on top of which various
policies can be implemented: If we ever decide to do process management in a
different way, we want to run as little risk as possible that we have to change
the kernel.

in the previcus article, we explained that client processes block when they
do transactions, and that sciver processes block when they wait for a client’s
request. It is very difficult to write programs using non-blocking transactions.
It's much simpler using blocking ones. Additionally, blocking transactions can
be implemented much more efficiently than non-blocking ones. To achieve
parallelism, one uses parallel processes.

In traditional operating systems, each process runs in its own address space.
In distributed systems, processes are created at such an enormous rate that the
cost of making each one run in its own address space is prohibitive. Many
distributed systems, therefore, provide light-weight processes, processes that
share a single address space. Processes then have very little context, and pro-
cess switching can be done very efficiently.

16



We call a light-weight process a task, and a group of tasks sharing an
address space a cluster, although sometimes we’ll use the term process for clus-
ter as well. The address space is divided up into segments. A cluster can have
a number of read-only segments (useful to hold the program’s code), and a
number of read-write segments, write-only segments (they can be useful,
believe it or not), segments that can grow (for the stack), and so on.

Running a program on an Amoeba machine requires the following steps.
First, the segments that the program will use must be created and filled with
the proper contents. Then a cluster descriptor is given to the kernel, giving the
mapping of the segments into the new cluster’s address space, and the number
and state of its tasks.

When a running cluster is stopped, the Amoeba Kernel hands over a cluster
descriptor for it, describing the state of the cluster at the moment it was
stopped.

The process server is a user-space server which runs on each Amoeba
machine and acts as a sort of “agent on the spot” for remote execution. To
run a process remotely, its cluster descriptor is sent to the process server on
that machine. The process server there then fetches segments over the net-
work, if necessary, and creates the cluster.

Co-operating process servers can use the kernel mechanisms to implement
process migration for load balancing, for instance, or if a machine has to be
brought down for maintenance.

Cluster descriptors also play an important role in exception handling. Each
cluster descriptor contains a table that specifies for each kind of exception
which server to call when it occurs. Special codes in the table can be used to
ignore certain exceptions, or to kill the cluster.

When an exception occurs, the kernel sends the cluster descriptor to the
specified server for handling. The handler can examine and manipulate the
cluster using the information provided by the cluster descriptor, and access the
cluster’s memory through the segment capabilities in the cluster descriptor.

Operating system emulation can be viewed as a special case of debugging.
A program, native to another operating system, can be run on Amoeba as if it
ran on the operating system it was written for. Before the process is run, its
environment is set up so that all system calls it does, all actions that cause
exceptions are trapped to an operating system emulator server. The emulator
can examine the state of the excepted process, determine what its original
operating system would have done when this exception occurred and simulate
that with the same mechanisms that the debugger uses.

The Amoeba process service mechanism thus provides a basic mechanism in
the Amoeba kernel for process management (segments and cluster descriptors),
which is used by user-space servers to augment this service with services for
remote execution, load balancing through migration, local and remote debug-
ging, checkpointing and operating system emulation.

17



3. FILE SERVICE

The file system has been designed to be highly modular, both to enhance relia-
bility and to provide a convenient testbed for doing research on distributed file
systems. It consists of three completely independent pieces: the block service,
the file service, and the directory service. In short, the block service provides
commands to read and write raw disk blocks. As far as it is concerned, no
two blocks are related in any way, that is, it has no concept of a file or other
aggregation of blocks. The file service uses the block service to build up files
with various properties. Finally, the directory service provides a mapping of
symbolic names onto object capabilities.

The block service is responsible for managing raw disk storage. It provides an
object-oriented interface to the outside world to relieve file servers from having
to understand the details of how disks work. The principle operations it per-
forms are:

- allocate a block, write data into it, and return a capability to the block

- given a capability for a block, free the block

- given a capability for a block, read and return the data contained in it

- given a capability for a block and some data, write the data into the block
- given a capability for a block and a key, lock or unlock the block

These primitives provide a convenient object-oriented interface for file servers
to use. In fact, any client who is unsatisfied with the standard file system can
use these operations to construct his own [8, 9].

The first four operations of allocate, free, read, and write hardly need much
comment. The fifth one provides a way for clients to lock individual blocks.
Although this mechanism is crude, it forms a sufficient basis for clients (e.g.,
file systems) to construct more elaborate locking schemes, should they so
desire.

One other operation is worth noting. The data within a block is entirely
uiider thc control of the processes possessing capabilities for it, but we expect
that most file servers will use a small portion of the data for redundancy pur-
poses. For example, a file server might use the first 32 bits of data to contain
a file number, and the next 32 bits to contain a relative block number within
the file. The block server supports an operation recovery, in which the client
provides the account number it uses in allocate operations and requests a list
of all capabilities on the whole disk containing this account number. (The
block server stores the account number for each block in a place not accessible
to clients.) Although recovery is a very expensive operation, in effect requiring
a search of the entire disk, armed with all the capabilities returned, a file server
that lost all of its internal tables in a crash could use the first 64 bits of each
block to rebuild its entire file list from scratch.

18



The purpose of splitting the block service and file service is to make it easy to
provide a multiplicity of different file services for different applications. One
such file service that we envision is one that supports flat files with no locking,
in other words, the UNix} model of a file as a linear sequence of bytes with no
internal structure and essentially no concurrency control. This model is quite
straightforward and will therefore not be discussed here further.

A more elaborate file service with explicit version and concurrency control
for a multiuser environment will be described instead [4]. This file service is
designed to support data base services, but it itself is just an ordinary, albeit
slightly advanced, file service. The basic model behind this file service is that a
file is a time-ordered sequence of versions, each version being a snapshot of
the file made at a moment determined by a client [2,7]. At any instant,
exactly one version of the file is the current version. To use a file, a client
sends a message to a file server process containing a file capability and a
request to create a new, private version of the current version. The server
returns a capability for this new version, which acts as if it is a block for block
copy of the current version made at the instant of creation. In other words, no
matter what other changes may happen to the file while the client is using his
private version, none of them are visible to him. Only changes he makes him-
self are visible.

Of course, for implementation efficiency, the file is not really copied block
for block. What actually happens is that when a version is created, a table of
pointers (capabilities) to all the file’s blocks is created. The capability granted
to the client for the new version actually refers to this version table rather than
the file itself. Whenever the client reads a block from the file, a bit is set in
the version table to indicate that the corresponding block has been read.
When a block is modified in the version, a new block is allocated using the
block server, the new block replaces the original one, and its capability is
inserted into the version table. A bit indicating that the block is a new one
rather than an original is also set. This mechanism is sometimes called “copy
on write.”

Versions that have been created and modified by a client are called uncom-
mitted versions. At a particular moment, the current version may have several
(different) uncommitted versions derived from it in use by different clients.
When a client is finished modifying his private version, he can ask the file
server to commit his version, that is, make it the current version instead of the
then current version. If the version from which the to-be-committed version
was derived is still current at the time of the commit, the commit succeeds and
becomes the new current version.

T UNIx is a Trademark of AT&T Bell Laboratories.

19



1.1 1.2 1.3
current

1.2.1 1.2.2 1.2.3

Figure 1.

As an example, suppose version 1 is initially the current version, with vari-
ous clients creating private versions 1.1, 1.2, and 1.3 based on it. If version 1.2
is the first to commit, it wins and 1.2 becomes the new current version, as
illustrated in FIGURE 1. Subsequent requests by other clients to create a ver-
sion will result in versions 1.2.1, 1.2.2, and 1.2.3, all initially copies of 1.2.

The fun begins when the owner of version 1.3 now tries to commit. Version
I, on which it is based, is no longer the current version, so a problem arises.
To see how this should be handled, we must introduce a concept from the data
base world, serializability [1,6). Two updates to a file are said to be serializ-
able if the net result is the same if they are run sequentially, in one or the
other order. As a simple example, consider a two character file initially con-
taining “ab.” Client 1 wants to write a “c” into the first character, wait a
while, and then write a “d” into the second character. Client 2 wants to write
an “e” into the first character, wait a while, and then write an “f” into the
second character. If 1 runs first we get “cd”; if 2 runs first we get “ef.” Both
of these are legal results, since the file server cannot dictate when the users

20



run. However, its job is to prevent final configurations of “cf” or “de,” both
of which result from interleaving the requests. If a client locks the file before
starting, does all its work, and then unlocks the file, the result will always be
either “cd” or “ef,” but never “cf” or “de.” What we are trying to do is
accomplish the same goal without using locking.

The idea behind not locking is that most updates, even on the same file, do
not affect the same parts of the file, and hence do not conflict. For example,
changes to an airline reservation data base for flights from San Francisco to
Los Angeles do not conflict with changes for flights from Amsterdam to Lon-
don. The strategy behind our commit mechanism is to let everyone make and
modify versions at will, with a check for serializability when a commit is
attempted. This mechanism has been proposed for data base systems [3], but
as far as we know, not for file systems.

The serializability check is straightforward. If a version to be committed, A,
is based on the version that is still current, B, it is serializable and the commit
succeeds. If it is not, a check must be made to see if all of the blocks belong-
ing to A that the client has read are the same in the current version as they
were in the version from which A was derived. If so, the previous commit or
commits only changed blocks that the client trying to commit 4 was not using,
so there is no problem and the commit can succeed.

If, however, some blocks have been changed, modifications that 4’s owner
has made may be based on data that are now obsolete, so the commit must be
refused, but a list is returned to A’s owner of blocks that caused conflicts, that
is, blocks marked “read” in 4 and marked “written” in the current version (or
any of its ancestors up to the version on which A is based). At this point, A’s
owner can make a new version and start all over again. Our assumption is
that this event is very unlikely, and that its occasional occurrence is a price
worth paying for not having locking, deadlocks, and the delays associated with
waiting for locks.

Because it is frequently inconvenient to deal with long binary bit strings such
as capabilities, a directory service is needed to provide symbolic naming. The
directory service’s task is to manage directories, each of which contains a col-
lection of (AscII name, capability) pairs. The principal operation on a direc-
tory object is for a client to present a capability for a directory and an ascI
name, and request the directory service to look up and return the capability
associated with the asci name. The inverse operation is to store an (ASCII
name, capability) pair in a directory whose capability is presented.

4. BANK SERVICE

The bank service is the heart of the resource management mechanism. It
implements an object called a “bank account” with operations to transfer vir-
tual money between accounts and to inspect the status of accounts. Bank
accounts come in two varieties: individual and business. Most users of the
system will just have one individual account containing all their virtual money.

21



This money is used to pay for cPU time, disk blocks, typesetter pages, and all
other resources for which the service owning the resource decides to levy a
charge.

Business accounts are used by services to keep track of who has paid them
and how much. Each business account has a subaccount for each registered
client. When a client transfers money from his individual account to the
service’s business account, the money transferred is kept in the subaccount for
that client, so the service can later ascertain each client’s balance. As an
example of how this mechanism works, a file service could charge for each disk
block written, deducting some amount from the client’s balance. When the
balance reached zero, no more blocks could be written. Large advance
payments and simple caching strategies can reduce the number of messages
sent to a small number.

Another aspect of the bank service is its maintenance of multiple currencies.
It can keep track of say, virtual dollars, virtual yen, virtual guilders and other
virtual currencies, with or without the possibility of conversion among them.
This feature makes it easy for subsystem designers to create new currencies
and control how they are allocated among the subsystems users.

The bank service described above allows different subsystems to have
different accounting policies. For example, a file or block service could decide
to use either a buy-sell or a rental model for accounting. In the former, when-
ever a block was allocated to a client, the client’s account with the service
would be debited by the cost of one block. When the block was freed, the
account would be credited. This scheme provides a way to implement absolute
limits (quotas) on resource use. In the latter model, the client is charged for
rental of blocks at a rate of X units per kiloblock-second or block-month or
something else. In this model, virtual money is constantly flowing from the
clients to the servers, in which case clients need some form of income to keep
them going. The policy about how income is generated and dispensed is deter-
mined by the owner of the currency in question, and is outside the scope of
the bank server.

REFERENCES

I. K. P. EswaRAN, J. N. GrRAY, R. A. LorIg, AND 1. L. TRAIGER, (November
1976). The Notions of Consistency and Predicate Locks in a Database
Operating System, Comm. ACM, 19.11, 624-633.

2. M. FriDRICH AND W. OLDER, (December 1981). The Felix File Server,
Proc. Eighth Symposium on Operating Systems Principles, 15.5, 37-44.

3. H. T. KuNG aND J. T. ROBINSON, (June 1981). On Optimistic Methods
for Concurrency Control, ACM Transactions on Database Systems, 6.2,
213-226.

4. S.J. MULLENDER AND A.S. TANENBAUM (November 1982). A Distributed
File Server Based on Optimistic Concurrency Control, /R-80, Vrije Univer-
siteit, Amsterdam.

22



S. J. MULLENDER, (October 1985). Principles of Distributed Operating Sys-
tem Design: SMC, Amsterdam.

C. H. PapaDIMITRIOU, (October 1979). Serializability of Concurrent
Updates, J. ACM, 26.4, 631-653.

D. REED AND L. SvoBoDOvA, (1981). SWALLOW: A Distributed Data
Storage System for a Local Network, Proc. IFIP, 355-373.

M. STONEBRAKER, (July 1981). Operating System Support for Database
Management, Comm. ACM, 24.7, 412-418.

A. S. TANENBAUM AND S. J. MULLENDER, (1982). Operating System
Requirements for Distributed Data Base Systems, pp. 105-114 in
Distributed Data Bases, ed. H. J. Schneider, North-Holland Publishing Co..

23



